Princeton University

Modern Equipment General Aviation (MEGA) Aircraft

Progress Report

Flavio Poehlmann-Martins & Probal Mitra

January 11, 2002

MAE 439

Prof. R. Stengel

Prof. L. Martinelli

- Passenger Cabin:
 - 4 passengers
 - Pressurized
 - Total volume: 105 ft³
 - Dimensions:
 - Length: 6.7 ft
 - Width: 4.6 ft
 - Height: 3.4 ft

- Luggage Compartment:
 - Inside and outside accessibility
 - Total volume: 18 ft³
 - Dimensions:
 - Length: 2.6 ft
 - Width: 3.5 ft
 - Height: 2.0 ft

4 X

Why Three Surfaces?

- More room for redundant control surfaces
- Canard provides additional lift during takeoff (flaperons)
- Better transient response to pitch input

- Stall behavior (plane designed to stall first at canard and last at tail)
- Disadvantage: increase in drag and weight

Canard

- Surface area: 17.2 ft²
- Span: 13.1 ft
- High aspect ratio: AR = 10 (+ winglets)
 - minimize downwash and drag
 - stalls earlier than wing
- Thickness ratio: t/c = 0.15 (gradual stall)
- Twist to prevent tip stall
- Nearly elliptical lift distribution (taper, twist)

Wing

- Surface area: 97.2 ft²
- Span: 27.9 ft
- Aspect ratio: AR = 8 (+ winglets)
- High wing design:
 - easy accessibility
 - little ground effects
 - structural advantages
 - short landing gear (retractable)
- Thick wing (t/c = 0.15)

T-Tail?

- Better for spin recovery
- More efficient yaw control

T-Tail

Airduct Location

- Minimize risk of engine stall
- Options: chin, nose, armpit, top
- Top of fuselage:
 - simple duct geometry (no split duct)
 - clean air (no disturbances due to canard or nose wheel)
 - fuselage can be designed to avoid flow separation at high angles of attack and sideslip

Weights

- Empty: 1,744 lb
- Passengers (max.): 880 lb
- Luggage (max): 355 lb
- Fuel: 561 lb (15% canard, 85% wing)

• Design takeoff gross weight: 3,540 lb

Weight Build Up

- Wing*: 149 lb
- Canard*: 45 lb
- Tail*: 19 lb
- Fuselage*: 326 lb
- Landing gear: 217 lb
- Engine & fuel sys: 259
- Avionics: 119

- A/c & anti ice: 102
- Flight Controls,
 hydraulics, and
 electronics **: 228
- Miscellaneous: 281

(all weights in lb)

Future Work

• Aircraft:

- Exact locations of interior components: center of gravity & moments of inertia
- Aerodynamic force and moment coefficients (CFD)

Architecture:

- Actual reliability statistics
- Control laws for redundancy and dynamics

Acknowledgements

- Prof. Robert Stengel
- Prof. Luigi Martinelli
- Prof. Alexander Smits
- Prof. Jeremy Kasdin
- Manish Sinha